Despite advances in feature representation, leveraging geometric relations is crucial for establishing reliable visual correspondences under large variations of images. In this work we introduce a Hough transform perspective on convolutional matching and propose an effective geometric matching algorithm, dubbed Convolutional Hough Matching (CHM). The method distributes similarities of candidate matches over a geometric transformation space and evaluate them in a convolutional manner. We cast it into a trainable neural layer with a semi-isotropic high-dimensional kernel, which learns non-rigid matching with a small number of interpretable parameters. To validate the effect, we develop the neural network with CHM layers that perform convolutional matching in the space of translation and scaling. Our method sets a new state of the art on standard benchmarks for semantic visual correspondence, proving its strong robustness to challenging intra-class variations.
翻译:尽管在地貌代表方面有所进步,但利用几何关系对于在大变形图像下建立可靠的视觉通信至关重要。 在这项工作中,我们引入了对进化匹配的Hough变换视角,并提出了有效的几何匹配算法,称为CHM。这种方法在几何转换空间上分配候选人匹配的相似之处,并以进化方式对其进行评估。我们将其投入一个具有半进化高维度神经层的可训练神经层,该神经层学习与少量可解释参数的非硬化匹配。为了验证效果,我们开发了与CHM层的神经网络,这些神经网络在翻译和缩放空间中进行进化匹配。我们的方法为语义视觉通信的标准基准设置了新的艺术状态,证明了它对于挑战阶级内部变异的强大强力。