课程简介
Geoffrey Hinton《神经网络机器学习》经典课程共有16节,基本涵盖了神经网络相关的各个知识点,包括神经网络、神经元模型、感知机、反向传播算法等,虽然课程中有些算法已经过时,但其中的理论基础仍然在为今天的各类主流算法提供着可靠的支持,对于算法研究者来说,有助于加深对这一领域的理解,并对未来的研究方向起到一定的借鉴意义。
课程讲师:Geoffrey Hinton
讲师简介
Geoffrey Hinton,被称为“神经网络之父”、“深度学习鼻祖”,他曾获得爱丁堡大学人工智能的博士学位,并且为多伦多大学的特聘教授。在2012年,Hinton还获得了加拿大基廉奖(Killam Prizes,有“加拿大诺贝尔奖”之称的国家最高科学奖)。2013年,Hinton 加入谷歌并带领一个AI团队,他将神经网络带入到研究与应用的热潮,将“深度学习”从边缘课题变成了谷歌等互联网巨头仰赖的核心技术,并将反向传播算法应用到神经网络与深度学习。
个人主页:
Geoffrey Hinton:https://www.cs.toronto.edu/~hinton/