This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.
翻译:本文建议用一种方法,将传统的神经神经变幻网络(CNNNs)修改为可解释的CNN, 以澄清CNN高调层的知识表现。 在可解释的CNN中,每个高调层的过滤器代表一个特定的对象部分。 我们不需要任何物体部件或纹理的说明来监督学习过程。 相反,可解释的CNN自动将每个过滤器都指定在一个高调层,在学习过程中将一个对象部分。我们的方法可以适用于结构不同的不同类型的CNN。在可解释的CNN中,清晰的知识表现可以帮助人们理解CNN的逻辑,即CNN作决定所依据的规律。实验显示,在可解释的CNN的过滤器比传统的CNN的过滤器更具有内涵意义。