In this paper, we propose a distributed multi-stage optimization method for planning complex missions for heterogeneous multi-robot teams. This class of problems involves tasks that can be executed in different ways and are associated with cross-schedule dependencies that constrain the schedules of the different robots in the system. The proposed approach involves a multi-objective heuristic search of the mission, represented as a hierarchical tree that defines the mission goal. This procedure outputs several favorable ways to fulfill the mission, which directly feed into the next stage of the method. We propose a distributed metaheuristic based on evolutionary computation to allocate tasks and generate schedules for the set of chosen decompositions. The method is evaluated in a simulation setup of an automated greenhouse use case, where we demonstrate the method's ability to adapt the planning strategy depending on the available robots and the given optimization criteria.
翻译:在本文中,我们提出一个分布式多阶段优化方法,用于规划多元多机器人小组的复杂任务。这一系列问题涉及可以以不同方式执行的任务,并且与限制系统中不同机器人时间表的跨周期依赖性有关。拟议方法涉及对任务进行多目标的超常搜索,作为确定任务目标的分层树。这一程序为完成任务提供了几种有利的方法,这些方法直接反馈到方法的下一阶段。我们根据进化计算提出一个分布式的计量经济学,以分配任务,为所选的分解组生成时间表。该方法在自动温室气体使用案例的模拟设置中进行评估,我们在这里根据现有机器人和给定的优化标准,展示该方法调整规划战略的能力。