Estimating the difference between quantum data is crucial in quantum computing. However, as typical characterizations of quantum data similarity, the trace distance and quantum fidelity are believed to be exponentially-hard to evaluate in general. In this work, we introduce hybrid quantum-classical algorithms for these two distance measures on near-term quantum devices where no assumption of input state is required. First, we introduce the Variational Trace Distance Estimation (VTDE) algorithm. We in particular provide the technique to extract the desired spectrum information of any Hermitian matrix by local measurement. A novel variational algorithm for trace distance estimation is then derived from this technique, with the assistance of a single ancillary qubit. Notably, VTDE could avoid the barren plateau issue with logarithmic depth circuits due to a local cost function. Second, we introduce the Variational Fidelity Estimation (VFE) algorithm. We combine Uhlmann's theorem and the freedom in purification to translate the estimation task into an optimization problem over a unitary on an ancillary system with fixed purified inputs. We then provide a purification subroutine to complete the translation. Both algorithms are verified by numerical simulations and experimental implementations, exhibiting high accuracy for randomly generated mixed states.
翻译:估计量子数据之间的差别在量子计算中至关重要。 但是,由于量子数据相似性的典型特征,跟踪距离和量值忠度被认为很难进行总体评估。 在这项工作中,我们为短期量子装置的这两项距离测量引入混合量子古典算法,无需假定输入状态。首先,我们引入变异追踪距离估计算法(VTDE)算法(VTDE)。我们特别提供技术,通过局部测量从任何赫米蒂安矩阵中提取所需的频谱信息。然后在单一辅助方位的协助下,从这一技术中得出追踪距离估计的新的变异算法。值得注意的是,VTDE可以避免由于当地成本功能而导致的对数深度电路的低温高温问题。第二,我们引入变异致电解偏振动偏移(VFE)算法(VFEFE)算法(VFEFE)。我们结合了Ulmann的理论和净化中将估计任务转化为固定净化输入的辅助系统的统一的优化问题。我们随后通过一个单一的精化投入来提供一种精密化的微的实验性模拟,然后通过随机的实验性演算法来进行结果的混合地模拟的实验性分析。