Data is of high quality if it is fit for its intended use. The quality of data is influenced by the underlying data model and its quality. One major quality problem is the heterogeneity of data as quality aspects such as understandability and interoperability are impaired. This heterogeneity may be caused by quality problems in the data model. Data heterogeneity can occur in particular when the information given is not structured enough and just captured in data values, often due to missing or non-suitable structure in the underlying data model. We propose a bottom-up approach to detecting quality problems in data models that manifest in heterogeneous data values. It supports an explorative analysis of the existing data and can be configured by domain experts according to their domain knowledge. All values of a selected data field are clustered by syntactic similarity. Thereby an overview of the data values' diversity in syntax is provided. It shall help domain experts to understand how the data model is used in practice and to derive potential quality problems of the data model. We outline a proof-of-concept implementation and evaluate our approach using cultural heritage data.


翻译:如果数据适合预定使用,则数据的质量是高质量的。数据的质量受基本数据模型及其质量的影响。一个主要的质量问题在于数据的多样性,因为数据质量方面,例如易懂性和互操作性等质量方面受到损害。数据模型的质量问题可能造成这种异质性。数据异质性尤其可能发生,特别是当所提供的信息结构不够完善,而且只是以数据值来捕捉数据时,往往由于数据模型缺失或不适宜。我们建议采用自下而上的方法来发现以多元数据值显示的数据模型的质量问题。它支持对现有数据进行探索性分析,并且可以由域专家根据它们的领域知识配置。选定的数据领域的所有数值都由同义性相似性组合在一起。通过提供对数据值在语法中的多样性的概览,帮助域专家了解数据模型在实践中如何使用,并了解数据模型的潜在质量问题。我们概述了概念的验证实施情况,并用文化遗产数据数据数据数据数据数据数据来评估我们的方法。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
【实用书】流数据处理,Streaming Data,219页pdf
专知会员服务
76+阅读 · 2020年4月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
【实用书】流数据处理,Streaming Data,219页pdf
专知会员服务
76+阅读 · 2020年4月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员