Structural bias or segregation of networks refers to situations where two or more disparate groups are present in the network, so that the groups are highly connected internally, but loosely connected to each other. In many cases it is of interest to increase the connectivity of disparate groups so as to, e.g., minimize social friction, or expose individuals to diverse viewpoints. A commonly-used mechanism for increasing the network connectivity is to add edge shortcuts between pairs of nodes. In many applications of interest, edge shortcuts typically translate to recommendations, e.g., what video to watch, or what news article to read next. The problem of reducing structural bias or segregation via edge shortcuts has recently been studied in the literature, and random walks have been an essential tool for modeling navigation and connectivity in the underlying networks. Existing methods, however, either do not offer approximation guarantees, or engineer the objective so that it satisfies certain desirable properties that simplify the optimization~task. In this paper we address the problem of adding a given number of shortcut edges in the network so as to directly minimize the average hitting time and the maximum hitting time between two disparate groups. Our algorithm for minimizing average hitting time is a greedy bicriteria that relies on supermodularity. In contrast, maximum hitting time is not supermodular. Despite, we develop an approximation algorithm for that objective as well, by leveraging connections with average hitting time and the asymmetric k-center problem.
翻译:暂无翻译