We design an operator from the infinite-dimensional Sobolev space ${\boldsymbol H}(\mathrm{curl})$ to its finite-dimensional subspace formed by the N\'ed\'elec piecewise polynomials on a tetrahedral mesh that has the following properties: 1) it is defined over the entire ${\boldsymbol H}(\mathrm{curl})$, including boundary conditions imposed on a part of the boundary; 2) it is defined locally in a neighborhood of each mesh element; 3) it is based on simple piecewise polynomial projections; 4) it is stable in the ${\boldsymbol L}^2$-norm, up to data oscillation; 5) it has optimal (local-best) approximation properties; 6) it satisfies the commuting property with its sibling operator on ${\boldsymbol H}(\mathrm{div})$; 7) it is a projector, i.e., it leaves intact objects that are already in the N\'ed\'elec piecewise polynomial space. This operator can be used in various parts of numerical analysis related to the ${\boldsymbol H}(\mathrm{curl})$ space. We in particular employ it here to establish the two following results: i) equivalence of global-best, tangential-trace-and curl-constrained, and local-best, unconstrained approximations in ${\boldsymbol H}(\mathrm{curl})$ including data oscillation terms; and ii) fully $h$- and $p$- (mesh-size- and polynomial-degree-) optimal approximation bounds valid under the minimal Sobolev regularity only requested elementwise. As a result of independent interest, we also prove a $p$-robust equivalence of curl-constrained and unconstrained best-approximations on a single tetrahedron in the ${\boldsymbol H}(\mathrm{curl})$-setting, including $hp$ data oscillation terms.
翻译:我们设计一个操作员,从无限的 Sobolev 空间 $\ boldsylmbol H} (\ mathrm{ curl}) 美元到由 N\'ed\'ele cheatyl monial 以四面线网格构成的有限维基空间, 具有以下属性:1) 它的定义来自整个$\ boldsymol H} (\ mathrm{ curl}) 美元, 包括对部分边界强加的边界条件; 2) 它定义在每一网格元素的附近; 3) 它以简单的平面多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色多色 。