We study Bayesian group-regularized estimation in high-dimensional generalized linear models (GLMs) under a continuous spike-and-slab prior. Our framework covers both canonical and non-canonical link functions and subsumes logistic, Poisson, negative binomial, and Gaussian regression with group sparsity. We obtain the minimax L2 convergence rate for both a maximum a posteriori (MAP) estimator and the full posterior distribution under our prior. Our theoretical results thus justify the use of the posterior mode as a point estimator. The posterior distribution also contracts at the same rate as the MAP estimator, an attractive feature of our approach which is not the case for the group lasso. For computation, we propose expectation-maximization (EM) and Markov chain Monte Carlo (MCMC) algorithms. We illustrate our method through simulations and a real data application on predicting human immunodeficiency virus (HIV) drug resistance from protein sequences.
翻译:暂无翻译