We propose a kernel-based nonparametric test of relative goodness of fit, where the goal is to compare two models, both of which may have unobserved latent variables, such that the marginal distribution of the observed variables is intractable. The proposed test generalizes the recently proposed kernel Stein discrepancy (KSD) tests (Liu et al., 2016, Chwialkowski et al., 2016, Yang et al., 2018) to the case of latent variable models, a much more general class than the fully observed models treated previously. The new test, with a properly calibrated threshold, has a well-controlled type-I error. In the case of certain models with low-dimensional latent structure and high-dimensional observations, our test significantly outperforms the relative Maximum Mean Discrepancy test, which is based on samples from the models and does not exploit the latent structure.
翻译:我们提出一个以内核为基础的相对适中性非参数测试,目的是比较两种模型,这两种模型都可能有未观测到的潜在变量,因此观察到的变量的边际分布是难以控制的。 拟议的测试将最近提议的内核斯坦质差异(KSD)测试(Liu等人,2016年,Chwialkowski等人,2016年,Yang等人,2018年)概括为潜伏变量模型,这种模型比以前所处理的完全观察的模型要一般得多。 新的测试,有适当校准的阈值,有受到良好控制的型号I错误。 对于某些具有低维潜值结构和高维度观测的模型,我们的测试大大超过基于模型样本的相对最大值差异测试,没有利用潜在结构。