The low rank tensor completion (LRTC) problem has attracted great attention in computer vision and signal processing. How to acquire high quality image recovery effect is still an urgent task to be solved at present. This paper proposes a new tensor $L_{2,1}$ norm minimization model (TLNM) that integrates sum nuclear norm (SNN) method, differing from the classical tensor nuclear norm (TNN)-based tensor completion method, with $L_{2,1}$ norm and Qatar Riyal decomposition for solving the LRTC problem. To improve the utilization rate of the local prior information of the image, a total variation (TV) regularization term is introduced, resulting in a new class of tensor $L_{2,1}$ norm minimization with total variation model (TLNMTV). Both proposed models are convex and therefore have global optimal solutions. Moreover, we adopt the Alternating Direction Multiplier Method (ADMM) to obtain the closed-form solution of each variable, thus ensuring the feasibility of the algorithm. Numerical experiments show that the two proposed algorithms are convergent and outperform compared methods. In particular, our method significantly outperforms the contrastive methods when the sampling rate of hyperspectral images is 2.5\%.
翻译:低等级高压完成问题在计算机视觉和信号处理中引起了极大关注。 如何获得高质量的图像恢复效果仍然是目前需要解决的一项紧迫任务。 本文件提议采用一个新的标准最小化模式(TLNM),该模式将核规范与传统高标准(TNN)基于高标准(TNN)的高压完成方法(TNN)不同,以$L ⁇ 2,1美元为标准,卡塔尔里亚尔分解法解决LRTC问题。为了提高当地先前图像信息的利用率,引入了一个完全变异(TV)的正规化术语,从而形成一个新的等级为10美元/L ⁇ 2,1美元的标准最小化模式(TLNMTV),这两种模式都与古典的高温标准(TNNNNM)方法不同,因此都具有全球最佳解决方案。 此外,我们采用了“变异方向多动法”(ADMMM)以获得每种变数的封闭式解决方案,从而确保算法的可行性。 数字实验表明,两种拟议的变数法是趋同率和超模率。 具体方法是对比的。