At modern construction sites, utilizing GNSS (Global Navigation Satellite System) to measure the real-time location and orientation (i.e. pose) of construction machines and navigate them is very common. However, GNSS is not always available. Replacing GNSS with on-board cameras and visual simultaneous localization and mapping (visual SLAM) to navigate the machines is a cost-effective solution. Nevertheless, at construction sites, multiple construction machines will usually work together and side-by-side, causing large dynamic occlusions in the cameras' view. Standard visual SLAM cannot handle large dynamic occlusions well. In this work, we propose a motion segmentation method to efficiently extract static parts from crowded dynamic scenes to enable robust tracking of camera ego-motion. Our method utilizes semantic information combined with object-level geometric constraints to quickly detect the static parts of the scene. Then, we perform a two-step coarse-to-fine ego-motion tracking with reference to the static parts. This leads to a novel dynamic visual SLAM formation. We test our proposals through a real implementation based on ORB-SLAM2, and datasets we collected from real construction sites. The results show that when standard visual SLAM fails, our method can still retain accurate camera ego-motion tracking in real-time. Comparing to state-of-the-art dynamic visual SLAM methods, ours shows outstanding efficiency and competitive result trajectory accuracy.
翻译:在现代建筑工地,利用全球导航卫星系统(全球导航卫星系统)测量建筑机器的实时位置和方向(即摆布)并对其进行导航,这是非常常见的。然而,全球导航卫星系统并非总能提供。用机上照相机和视觉同步本地化和绘图(视频SLAM)取代全球导航卫星系统,是具有成本效益的解决办法。然而,在建筑工地,多台建筑机器通常会一起并肩工作,造成摄像机眼中的大规模动态隔离。标准视觉SLAMM无法很好地处理大型动态闭塞。在这项工作中,我们提出一个运动分割法,以便从拥挤的动态场景中高效地提取固定部分,以便能够对相机的自我感动进行强有力的跟踪。我们的方法利用语义信息,加上目标级的地理测量限制,来快速探测机器的静态部分。然后,我们用静态部分进行两步相偏向自动跟踪,从而形成一个全新的动态视觉SLM结构。我们通过基于 ORB-SLAM2和从真实的视觉自我定位轨迹来测试我们的建议。我们从真实的SLA-SA-SAR-S-S-S-S-S-SAR-SAR-SAR-SAR-SAR-SAR-C-S-SD-SD-SD-SD-SD-SD-SAR-SD-SD-SD-SD-SD-SD-SD-S-SD-SD-SD-SD-S-S-S-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-S-S-SD-SD-SD-SD-SD-SD-SD-SD-SD-S-S-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-S-SD-SD-S-S-S-S-S-S-S-S-S-S-SD-SD-SD-SD-SD-SD-SD-SD-S