It follows from the work of Tait and the Four-Color-Theorem that a planar cubic graph is 3-edge-colorable if and only if it contains no bridge. We consider the question of which planar graphs are subgraphs of planar cubic bridgeless graphs, and hence 3-edge-colorable. We provide an efficient recognition algorithm that given an $n$-vertex planar graph, augments this graph in $O(n^2)$ steps to a planar cubic bridgeless supergraph, or decides that no such augmentation is possible. The main tools involve the Generalized Antifactor-problem for the fixed embedding case, and SPQR-trees for the variable embedding case.
翻译:根据泰特和四色理论的工作, 平面立方图只有在没有桥梁的情况下, 才会是3- 亮色的。 我们考虑的是哪些平面图是平面立方图的子图, 因而是3- 彩色的。 我们提供了一个有效的识别算法, 以美元为单位, 以负平面平面图为单位, 以$(n)2美元为单位, 将这个图添加到无平面立方体的超强图上, 或者决定不可能进行这种增压。 主要工具涉及固定嵌入的通用抗菌问题, 以及变量嵌入的 SPQR 树 。