Regrasping is important for robots to reorient objects in planar manipulation tasks. Different placements of objects can provide robots with alternative grasp configurations, which are used in complex planar manipulation tasks that require multiple pick-rotate-and-place steps due to the constraints of the environment and robot kinematics. In this work, our goal is to generate diverse placements of objects on the plane using deep neural networks. We propose a pipeline with the stages of orientation generation, position refinement, and placement discrimination to obtain accurate and diverse stable placements based on the perception of point clouds. A large-scale dataset is created for training, including simulated placements and contact information between objects and the plane. The simulation results show that our pipeline outperforms the start-of-the-art, achieving an accuracy rate of 90.4% and a diversity rate of 81.3% in simulation on generated placements. Our pipeline is also validated in real-robot experiments. With the generated placements, sequential pick-rotate-and-place steps are calculated for the robot to reorient objects to goal poses that are not reachable within one step. Videos and dataset are available at https://sites.google.com/view/pmvlr2022/.


翻译:在平板操作任务中,对机器人进行重新定位非常重要。 不同对象的不同位置可以向机器人提供替代的控件配置, 用于复杂的平板操作任务, 由于环境和机器人动力学的限制, 需要多个选取- rotate- 和位置步骤。 在这项工作中, 我们的目标是利用深层神经网络在飞机上产生不同对象的位置。 我们提议一个带有定向生成、 定位改进和定位歧视阶段的管道, 以便根据对点云的感知获得准确和多样的稳定位置。 为培训创建了一个大型数据集, 包括模拟定位和物体与平面之间的接触信息。 模拟结果显示, 我们的管道比艺术启动速度快90.4%, 在模拟产生的位置时, 多样性速度为81.3%。 我们的管道在真实的机器人实验中也得到验证。 由于生成的定位, 连续选取- rotate- place 和 步骤被计算为机器人调整对象位置, 目标配置是无法在一步内达到的。 视频和数据是在 http:// orgs 和 https 。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
16篇论文入门manipulation研究
机器人学家
15+阅读 · 2017年6月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
16篇论文入门manipulation研究
机器人学家
15+阅读 · 2017年6月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员