In this paper, we present a method to manipulate unknown objects in-hand using tactile sensing without relying on a known object model. In many cases, vision-only approaches may not be feasible; for example, due to occlusion in cluttered spaces. We address this limitation by introducing a method to reorient unknown objects using tactile sensing. It incrementally builds a probabilistic estimate of the object shape and pose during task-driven manipulation. Our approach uses Bayesian optimization to balance exploration of the global object shape with efficient task completion. To demonstrate the effectiveness of our method, we apply it to a simulated Tactile-Enabled Roller Grasper, a gripper that rolls objects in hand while collecting tactile data. We evaluate our method on an insertion task with randomly generated objects and find that it reliably reorients objects while significantly reducing the exploration time.
翻译:在本文中,我们在不依赖已知物体模型的情况下,提出了一个使用触觉感测来操作手头不明物体的方法。 在许多情况下, 仅视目标的方法可能不可行; 例如, 因为在封闭的空间中被隔离。 我们通过采用触摸感测方法来改变未知物体的方向, 从而解决这个问题。 它会逐步建立对对象形状的概率估计, 并在任务驱动的操作中产生。 我们的方法是利用贝叶斯优化来平衡全球物体形状的探索与高效任务完成之间的平衡。 为了显示我们方法的有效性, 我们将其应用到模拟触摸- Enabled Roller Grasper 上, 一种在收集触摸数据时将物体放入手头的抓抓抓器。 我们用随机生成的物体来评估插入任务的方法, 并发现它可靠地调整物体的探测时间, 同时大大缩短了探索时间 。</s>