We propose a two-phase systematical framework for approximation algorithm design and analysis via Lyapunov function. The first phase consists of using Lyapunov function as an input and outputs a continuous-time approximation algorithm with a provable approximation ratio. The second phase then converts this continuous-time algorithm to a discrete-time algorithm with almost the same approximation ratio along with provable time complexity. One distinctive feature of our framework is that we only need to know the parametric form of the Lyapunov function whose complete specification will not be decided until the end of the first phase by maximizing the approximation ratio of the continuous-time algorithm. Some immediate benefits of the Lyapunov function approach include: (i) unifying many existing algorithms; (ii) providing a guideline to design and analyze new algorithms; and (iii) offer new perspectives to potentially improve existing algorithms. We use various submodular maximization problems as running examples to illustrate our framework.
翻译:我们提议了一个通过 Lyapunov 函数进行近似算法设计和分析的两阶段系统框架。 第一阶段包括使用 Lyapunov 函数作为输入和输出, 一种具有可证实近似比率的连续时间近似算法。 第二阶段随后将这种连续时间算法转换成一种离散时间算法, 近似比率几乎相同, 以及可证实的时间复杂性。 我们框架的一个独特特征是,我们只需要知道 Lyapunov 函数的参数形式, 其完整的规格要等到第一阶段结束时才能确定, 也就是通过最大限度地提高连续时间算法的近似比率。 Lyapunov 函数方法的一些直接好处包括:(i) 统一许多现有的算法;(ii) 提供设计和分析新算法的指导方针;以及 (iii) 提供新的观点, 以可能改进现有的算法。 我们用各种子模式的最大化问题作为实例来说明我们的框架。