Machine learning (ML) may be oblivious to human bias but it is not immune to its perpetuation. Marginalisation and iniquitous group representation are often traceable in the very data used for training, and may be reflected or even enhanced by the learning models. In the present work, we aim at clarifying the role played by data geometry in the emergence of ML bias. We introduce an exactly solvable high-dimensional model of data imbalance, where parametric control over the many bias-inducing factors allows for an extensive exploration of the bias inheritance mechanism. Through the tools of statistical physics, we analytically characterise the typical properties of learning models trained in this synthetic framework and obtain exact predictions for the observables that are commonly employed for fairness assessment. Despite the simplicity of the data model, we retrace and unpack typical unfairness behaviour observed on real-world datasets. We also obtain a detailed analytical characterisation of a class of bias mitigation strategies. We first consider a basic loss-reweighing scheme, which allows for an implicit minimisation of different unfairness metrics, and quantify the incompatibilities between some existing fairness criteria. Then, we consider a novel mitigation strategy based on a matched inference approach, consisting in the introduction of coupled learning models. Our theoretical analysis of this approach shows that the coupled strategy can strike superior fairness-accuracy trade-offs.


翻译:在目前的工作中,我们的目标是澄清数据几何在出现ML偏差时所起的作用。我们引入了完全可以溶解的高维数据不平衡模型,对许多偏差诱因的控制允许广泛探索偏差继承机制。我们通过统计物理工具分析这一合成框架所培训的学习模型的典型特性,并用精确的预测来判断通常用于公平评估的观测结果。尽管数据模型简洁,我们还是要回溯和解析现实世界数据集所观察到的典型不公平行为。我们还获得了一个详细分析的减少偏差战略分类的高度模型。我们首先考虑一种基本的损失比重方案,它可以隐含地减少不同的不公平度指标,并量化在这种合成框架中所培训的学习模型的典型特性,并获得对通常用于公平评估的观测结果的准确预测。尽管数据模型简单,我们还是要追溯和解析在现实世界数据集中观察到的典型的不公平行为。我们还能够详细分析一种减轻偏差战略的分类。我们首先考虑一种基本的损失比重方案,这样可以隐含地减少不同的不公平度指标,并且用量化某种不相容性的方法在采用一种基于理论分析的方法中相互平衡的战略。我们后来可以比较地研究。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
68+阅读 · 2022年9月7日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关论文
Arxiv
16+阅读 · 2022年11月21日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
68+阅读 · 2022年9月7日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
12+阅读 · 2019年4月9日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员