Current state-of-the-art approaches for Semi-supervised Video Object Segmentation (Semi-VOS) propagates information from previous frames to generate segmentation mask for the current frame. This results in high-quality segmentation across challenging scenarios such as changes in appearance and occlusion. But it also leads to unnecessary computations for stationary or slow-moving objects where the change across frames is minimal. In this work, we exploit this observation by using temporal information to quickly identify frames with minimal change and skip the heavyweight mask generation step. To realize this efficiency, we propose a novel dynamic network that estimates change across frames and decides which path -- computing a full network or reusing previous frame's feature -- to choose depending on the expected similarity. Experimental results show that our approach significantly improves inference speed without much accuracy degradation on challenging Semi-VOS datasets -- DAVIS 16, DAVIS 17, and YouTube-VOS. Furthermore, our approach can be applied to multiple Semi-VOS methods demonstrating its generality. The code is available in https://github.com/HYOJINPARK/Reuse_VOS.


翻译:目前对半监督的视频对象分割(Semi-VOS) 采用的最新方法传播了以往框架的信息,以生成当前框架的分隔面罩。 结果是在具有挑战性的情景( 如外观和封闭面的变化)中进行高质量的分割。 但它也导致在跨框架变化最小的情况下对固定或缓慢移动的天体进行不必要的计算。 在这项工作中, 我们利用这一观察方法, 利用时间信息快速识别框架, 进行最小变化, 跳过重力面罩生成步骤。 为了实现这一效率, 我们提议建立一个新的动态网络, 估计跨框架的变化, 并决定哪条路径( 计算完整网络或使用先前框架的特征), 取决于预期的相似性。 实验结果显示, 我们的方法大大改进了半VOS数据集( DAVIS 16, DAVIS 17, YouTube-VOS 17) 的推断速度, 但没有多少精确度下降。 此外, 我们的方法可以适用于多个 Semi- VOS 方法, 展示其普遍性。 代码可在 https://github.com/ HYJINPARK/REuse_VESOVOS_VOVOVO.

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
图像分割方法综述
专知会员服务
56+阅读 · 2020年11月22日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
TensorMask: A Foundation for Dense Object Segmentation
Arxiv
10+阅读 · 2019年3月28日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
6+阅读 · 2018年6月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员