We propose an unfitted finite element method for numerically solving the time-harmonic Maxwell equations on a smooth domain. The model problem involves a Lagrangian multiplier to relax the divergence constraint of the vector unknown. The embedded boundary of the domain is allowed to cut through the background mesh arbitrarily. The unfitted scheme is based on a mixed interior penalty formulation, where Nitsche penalty method is applied to enforce the boundary condition in a weak sense, and a penalty stabilization technique is adopted based on a local direct extension operator to ensure the stability for cut elements. We prove the inf-sup stability and obtain optimal convergence rates under the energy norm and the $L^2$ norm for both the vector unknown and the Lagrangian multiplier. Numerical examples in both two and three dimensions are presented to illustrate the accuracy of the method.
翻译:我们建议了一种不合适的限定要素方法,用于在平坦域中以数字方式解决时间-调和 Maxwell 方程式。 模型问题涉及一个拉格朗格乘数, 以放松对未知矢量的分化限制。 允许将域的嵌入边界任意切穿背景网格。 不合适的办法基于一种混合的内刑配方, 使用尼采罚法在较弱的意义上强制实施边界条件, 并在当地直接扩展操作器的基础上采用罚款稳定法, 以确保切分元素的稳定。 我们证明了内位稳定, 并获得了能源规范下的最佳趋同率和对未知矢量和拉格朗格乘数的$L ⁇ 2值规范下的最佳趋同率。 提供了两个维三个维度的数值示例, 以说明该方法的准确性 。