This article presents an immersed virtual element method for solving a class of interface problems that combines the advantages of both body-fitted mesh methods and unfitted mesh methods. A background body-fitted mesh is generated initially. On those interface elements, virtual element spaces are constructed as solution spaces to local interface problems, and exact sequences can be established for these new spaces involving discontinuous coefficients. The discontinuous coefficients of interface problems are recast as Hodge star operators that are the key to project immersed virtual functions to classic immersed finite element (IFE) functions for computing numerical solutions. An a priori convergence analysis is established robust with respect to the interface location. The proposed method is capable of handling more complicated interface element configuration and provides better performance than the conventional penalty-type IFE method for the H(curl)-interface problem arising from Maxwell equations. It also brings a connection between various methods such as body-fitted methods, IFE methods, virtual element methods, etc.
翻译:此篇文章提供了一个隐蔽的虚拟元素方法, 用来解决一组界面问题, 它将机体适应的网格方法和不适宜网格方法的优势结合起来。 最初产生了一个背景体适应网格。 在这些界面元素上, 虚拟元素空间被构建为解决本地界面问题的解决方案空间, 并且可以为这些涉及不连续系数的新空间建立精确的序列。 界面问题的不连续系数被重新定位为 Hodge 恒星操作员, 它们是将嵌入的虚拟功能投射为典型的隐蔽的有限元素功能( IFE) 函数的关键, 用于计算数字解决方案。 对界面位置进行前置的合并分析。 拟议的方法能够处理更复杂的界面元素配置, 并比普通的 IFE 方法( Curl) 界面问题在 Maxwell 方程式中产生的效果要好。 它还将各种方法( 如机体适应的方法、 IFE 方法、 虚拟元素方法等) 联系起来 。