Recent research has revealed that deep generative models including flow-based models and Variational Autoencoders may assign higher likelihoods to out-of-distribution (OOD) data than in-distribution (ID) data. However, we cannot sample OOD data from the model. This counterintuitive phenomenon has not been satisfactorily explained and brings obstacles to OOD detection with flow-based models. In this paper, we prove theorems to investigate the Kullback-Leibler divergence in flow-based model and give two explanations for the above phenomenon. Based on our theoretical analysis, we propose a new method \PADmethod\ to leverage KL divergence and local pixel dependence of representations to perform anomaly detection. Experimental results on prevalent benchmarks demonstrate the effectiveness and robustness of our method. For group anomaly detection, our method achieves 98.1\% AUROC on average with a small batch size of 5. On the contrary, the baseline typicality test-based method only achieves 64.6\% AUROC on average due to its failure on challenging problems. Our method also outperforms the state-of-the-art method by 9.1\% AUROC. For point-wise anomaly detection, our method achieves 90.7\% AUROC on average and outperforms the baseline by 5.2\% AUROC. Besides, our method has the least notable failures and is the most robust one.


翻译:最近的研究表明,深度基因化模型,包括以流为基础的模型和自动自动代谢器,可能比在分配(ID)数据中的数据更有可能出现分配外(OOOD)数据。然而,我们无法从模型中抽样OOOD数据。这一反直觉现象没有得到令人满意的解释,并给以流为基础的模型探测OOD带来障碍。在本文中,我们证明用于调查以流为基础的模型中库尔背利利利差的理论,并给出上述现象的两个解释。根据我们的理论分析,我们提出了一种新的方法 \ PADMethod\ 来利用 KL 差异和本地表象对异常检测的依赖。关于流行基准的实验结果表明我们的方法的有效性和稳健。关于群体异常检测,我们的方法平均达到98.1 AMUROC,小批量尺寸为5. 相反,基于基准的测试方法平均只能达到64.6<unk> AUROC,由于在挑战性问题上的失败,我们的方法也超越了我们最不稳的状态- UR 7 和最稳健的常规方法。</s>

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
38+阅读 · 2021年8月31日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员