Subsampling is commonly used to overcome computational and economical bottlenecks in the analysis of finite populations and massive datasets. Existing methods are often limited in scope and use optimality criteria (e.g., A-optimality) with well-known deficiencies, such as lack of invariance to the measurement-scale of the data and parameterisation of the model. A unified theory of optimal subsampling design is still lacking. We present a theory of optimal design for general data subsampling problems, including finite population inference, parametric density estimation, and regression modelling. Our theory encompasses and generalises most existing methods in the field of optimal subdata selection based on unequal probability sampling and inverse probability weighting. We derive optimality conditions for a general class of optimality criteria, and present corresponding algorithms for finding optimal sampling schemes under Poisson and multinomial sampling designs. We present a novel class of transformation- and parameterisation-invariant linear optimality criteria which enjoy the best of two worlds: the computational tractability of A-optimality and invariance properties similar to D-optimality. The methodology is illustrated on an application in the traffic safety domain. In our experiments, the proposed invariant linear optimality criteria achieve 92-99% D-efficiency with 90-95% lower computational demand. In contrast, the A-optimality criterion has only 46% and 60% D-efficiency on two of the examples.
翻译:子抽样通常用于克服有限总体和海量数据分析中的计算和经济瓶颈。现有方法往往受到范围限制,并使用已知缺陷的优化准则(例如,A-optimality),例如缺乏对数据测量尺度和模型参数化的不变性。缺乏统一的最优子抽样设计理论。我们提出了一个理论,用于一般数据子抽样问题的最优设计,包括有限总体推断、参数密度估计和回归建模。我们的理论涵盖并概括了最基于不等概率抽样和反比重权的数据子选取优化方法。我们为一类最优性准则得出最优性条件,并在泊松和多项抽样设计下提供相应的算法来找到最优的抽样方案。我们提出了一类新的变换和参数化不变的线性最优性准则,其既具有A-optimal性的计算可计算性,又具有类似D-optimal性的不变性质。该方法在交通安全领域中进行了应用实例研究。在我们的实验中,新提出的不变线性最优性准则在计算要求较小的情况下,达到了92-99%的D效率。相比之下,A-optimality准则在两个实例中仅达到46%和60%的D-efficiency水平。