项目名称: 高维半参数模型假设检验问题的研究
项目编号: No.11501586
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 王思洋
作者单位: 中央财经大学
项目金额: 18万元
中文摘要: 高维数据分析是当前研究的热点,其研究成果集中在参数估计和变量选择等方面,关于高维情形的假设检验结论相对较少。与线性模型相比,半参数模型具有更广泛的适用性。基于以上两点,本课题研究高维半参数模型中协变量的检验问题。另外,在金融数据和生存数据分析中,往往存在先验信息,部分协变量的显著性检验问题更受关注。本项目依据变量维数p与样本量n的关系,将该检验问题划分为p
中文关键词: 高维数据;半参数模型;广义F统计量;广义U统计量;特定回归系数检验
英文摘要: The main results about high dimensional data analysis, a hot field in statistics, focus on parameter estimation and variable selection and related topics, and there are relatively few conclusions on high dimensional testing. The semi-parametric models are more applicable than linear models. Based on these two points, we will concentrate on testing for high dimensional semi-parametric models. Besides, in most cases there exists prior information and significance of part coefficients in the models is paid more attention, especially in analyzing financial data and survival data. We divide these testing problems into two cases with p<n and p>n by the relationship between covariates dimension p and sample size n. Under the framework of high dimensional partially linear models, this project will estimate the nonparametric components in the models by tools of spline, kernel, conditional expectation, matrix manipulation and so on, then construct generalized F statistic and generalized U statistic based on F and U statistics to effectively test the significance of some covariates, explore asymptotic properties of test statistics and powers of tests under alternative hypotheses, and further propose new tests for significance of specified covariates. In this procedure, we do not assume the distribution of the error term. At last, these tests will be implemented in analyzing financial data and gene-related data.
英文关键词: High dimensional data;Semi-parametric models;Generalized F statistic;Generalized U statistic;Specified coefficient test