In this work we present a comprehensive analysis of total variation (TV) on non Euclidean domains and its eigenfunctions. We specifically address parameterized surfaces, a natural representation of the shapes used in 3D graphics. Our work sheds new light on the celebrated Beltrami and Anisotropic TV flows, and explains experimental findings from recent years on shape spectral TV [Fumero et al. 2020] and adaptive anisotropic spectral TV [Biton and Gilboa 2022]. A new notion of convexity on manifolds is derived, by characterizing structures that are stable throughout the TV flow, performed on manifolds. We further propose a time efficient nonlinear and non Euclidean spectral framework for shape processing that is based on zero homogeneous flows, and propose three different such methods. Each method satisfies distinct characteristics, demonstrated through smoothing, enhancing and exaggerating filters.
翻译:在这项工作中,我们全面分析了非欧几里得域及其元功能的全面变异(TV),我们专门处理参数化表面,即3D图形中所用形状的自然表示;我们的工作为庆祝的Beltrami和Anisotrotropic电视流提供了新的亮光,并解释了近年来在光谱电视形状[Fumero等人,2020年]和适应性厌食光谱电视[Biton和Gilboa,2022年]和适应性厌食性亚光谱电视[Biton和Gilboa,2022年]方面的实验结果。通过在多管上进行的整个电视流中稳定的结构的特征化,得出了对多元物的共性的新概念。我们进一步提议了一个基于零同质流动的时高效非线和非欧Clidean光谱处理形状框架,并提出了三种不同的方法。每种方法都符合不同的特性,通过平滑、增强和放大过滤器表现出来证明。