Unsupervised Activity Segmentation by Joint Representation Learning and Online Clustering

论文链接:https://arxiv.org/abs/2105.13353
视频讲解:https://www.youtube.com/watch?v=i4Fh_3nzzUI&t=12s

论文简介:提出了一种新的无监督活动分割方法,它使用视频帧聚类作为前置任务,同时执行表示学习和在线聚类。这与通常按顺序执行表示学习和聚类的先前工作形成对比。作者通过采用时间最优传输来利用视频中的时间信息,将保留活动时间顺序的时间正则化项合并到用于计算伪标签集群分配的标准最优传输模块中。时间最优传输模块使得本文方法能够学习无监督活动分割的有效表示。此外,与之前需要在离线聚类之前存储整个数据集的学习特征的方法相比,本文方法可以通过在线方式一次处理一个小批量。

成为VIP会员查看完整内容
12

相关内容

【CVPR2022】UniVIP:自监督视觉预训练的统一框架
专知会员服务
27+阅读 · 2022年3月16日
【CVPR2022】弱监督目标定位建模为领域适应
专知会员服务
15+阅读 · 2022年3月4日
专知会员服务
20+阅读 · 2021年5月1日
【CVPR2021】基于Transformer的视频分割领域
专知会员服务
36+阅读 · 2021年4月16日
专知会员服务
21+阅读 · 2021年3月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员