Learning to generate a task-aware base learner proves a promising direction to deal with few-shot learning (FSL) problem. Existing methods mainly focus on generating an embedding model utilized with a fixed metric (eg, cosine distance) for nearest neighbour classification or directly generating a linear classier. However, due to the limited discriminative capacity of such a simple metric or classifier, these methods fail to generalize to challenging cases appropriately. To mitigate this problem, we present a novel deep metric meta-generation method that turns to an orthogonal direction, ie, learning to adaptively generate a specific metric for a new FSL task based on the task description (eg, a few labelled samples). In this study, we structure the metric using a three-layer deep attentive network that is flexible enough to produce a discriminative metric for each task. Moreover, different from existing methods that utilize an uni-modal weight distribution conditioned on labelled samples for network generation, the proposed meta-learner establishes a multi-modal weight distribution conditioned on cross-class sample pairs using a tailored variational autoencoder, which can separately capture the specific inter-class discrepancy statistics for each class and jointly embed the statistics for all classes into metric generation. By doing this, the generated metric can be appropriately adapted to a new FSL task with pleasing generalization performance. To demonstrate this, we test the proposed method on four benchmark FSL datasets and gain surprisingly obvious performance improvement over state-of-the-art competitors, especially in the challenging cases, eg, improve the accuracy from 26.14% to 46.69% in the 20-way 1-shot task on miniImageNet, while improve the accuracy from 45.2% to 68.72% in the 5-way 1-shot task on FC100. Code is available: https://github.com/NWPUZhoufei/DAM.


翻译:学会如何生成一个有使命感的基底学习者,这证明这是一个充满希望的方向,可以解决少见的学习(FSL)问题。现有方法主要侧重于为近邻分类或直接产生线性级类而生成一个固定的内嵌模型(例如, Cosine 距离 距离 ) 。然而,由于这样一个简单的衡量或分类器的有限歧视能力,这些方法无法概括到适当的挑战案例。为了缓解这一问题,我们提出了一个全新的深层次的内设元元生成方法,该方法将转向一个正统方向,即 26- 学习以适应的方式为基于任务描述的新FSL任务生成一个具体指标(例如,几个标签样本 ) 。在本研究中,我们用一个三层深度的深视网络来构建一个模型,足够灵活地为每项任务制作一个有歧视性的衡量标准。 此外,与在网络生成的标定样本上使用单调加权重量分配的方法不同, 拟议的元分解(demo-learner) 将一个多式的重量分布取决于跨类样本, 20级的精确度的精确度分布, 。我们可以单独地将45个调调的自动自动解算数据记录, 。

0
下载
关闭预览

相关内容

Eurographics是唯一在欧洲范围内真正的专业计算机图形协会。它汇集了来自世界各地的图形专家,该协会支持其成员推进计算机图形学以及多媒体,科学可视化和人机界面等相关领域的最新技术水平。通过其全球成员资格,EG与美国,日本和其他国家/地区的发展保持着密切联系,从而促进了全球范围内科学技术信息和技能的交流。 官网地址:http://dblp.uni-trier.de/db/conf/eurographics/
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员