This paper studies the traffic state estimation (TSE) problem using sparse observations from mobile sensors. Most existing TSE methods either rely on well-defined physical traffic flow models or require large amounts of simulation data as input to train machine learning models. Different from previous studies, we propose a purely data-driven and model-free solution in this paper. We consider the TSE as a spatiotemporal matrix completion/interpolation problem, and apply spatiotemporal delay embedding to transform the original incomplete matrix into a fourth-order Hankel structured tensor. By imposing a low-rank assumption on this tensor structure, we can approximate and characterize both global and local spatiotemporal patterns in a data-driven manner. We use the truncated nuclear norm of a balanced spatiotemporal unfolding -- in which each column represents the vectorization of a small patch in the original matrix -- to approximate the tensor rank. An efficient solution algorithm based on the Alternating Direction Method of Multipliers (ADMM) is developed for model learning. The proposed framework only involves two hyperparameters, spatial and temporal window lengths, which are easy to set given the degree of data sparsity. We conduct numerical experiments on real-world high-resolution trajectory data, and our results demonstrate the effectiveness and superiority of the proposed model in some challenging scenarios.
翻译:本文使用移动传感器的零星观测来研究交通状态估计问题。 大部分现有的 TSE 方法要么依靠定义明确的物理流量模型,要么需要大量模拟数据作为培训机器学习模型的投入。 与以往的研究不同, 我们在本文件中提出一个纯粹的数据驱动和无模型的解决方案。 我们认为 TSE 是一个时空矩阵完成/内插问题, 并应用时空延迟法, 将原来的不完整矩阵转换成第四级的 Hankel 结构高压。 通过对这一高压结构强加低等级的假设, 我们可以用数据驱动的方式来估计和描述全球和本地的随机时空模式。 我们使用平衡的波形正在演化的快速核规范 -- -- 每列中每个柱代表原始矩阵中小块的矢量 -- -- 接近高压级。 正在开发一种基于高压式多压器指导法(ADMM) 的有效解决方案算法, 用于示范学习。 拟议的框架仅涉及两个超偏直径、 空间和时空窗口长度, 以数据驱动器长度, 很容易在真实的轨道上展示我们所提出的高分辨率数据。