We propose a monotone discretization for the integral fractional Laplace equation on bounded Lipschitz domains with the homogeneous Dirichlet boundary condition. The method is inspired by a quadrature-based finite difference method of Huang and Oberman, but is defined on unstructured grids in arbitrary dimensions with a more flexible domain for approximating singular integral. The scale of the singular integral domain not only depends on the local grid size, but also on the distance to the boundary, since the H\"{o}lder coefficient of the solution deteriorates as it approaches the boundary. By using a discrete barrier function that also reflects the distance to the boundary, we show optimal pointwise convergence rates in terms of the H\"{o}lder regularity of the data on both quasi-uniform and graded grids. Several numerical examples are provided to illustrate the sharpness of the theoretical results.


翻译:我们建议对连接的利普西茨域域域的分解式拉普特方程式采用单色分解。 这种方法受黄和欧伯曼基于四方基的有限差异法的启发, 但定义在任意的无结构网格上, 其范围更灵活, 以近似单一元件。 单整体域的规模不仅取决于本地网格大小, 也取决于与边界的距离, 因为解决方案的H\ “ {o}lder 系数在接近边界时会恶化 。 通过使用一个离散的屏障功能, 也反映与边界的距离, 我们从半统一和分级网格的数据的H\\\{ o}lder 角度显示了最佳的点向趋同率。 提供了几个数字例子, 以说明理论结果的清晰性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员