This paper introduces ZIP-DL, a novel privacy-aware decentralized learning (DL) algorithm that exploits correlated noise to provide strong privacy protection against a local adversary while yielding efficient convergence guarantees for a low communication cost. The progressive neutralization of the added noise during the distributed aggregation process results in ZIP-DL fostering a high model accuracy under privacy guarantees. ZIP-DL further uses a single communication round between each gradient descent, thus minimizing communication overhead. We provide theoretical guarantees for both convergence speed and privacy guarantees, thereby making ZIP-DL applicable to practical scenarios. Our extensive experimental study shows that ZIP-DL significantly outperforms the state-of-the-art in terms of vulnerability/accuracy trade-off. In particular, ZIP-DL (i) reduces the efficacy of linkability attacks by up to 52 percentage points compared to baseline DL, (ii) improves accuracy by up to 37 percent w.r.t. the state-of-the-art privacy-preserving mechanism operating under the same threat model as ours, when configured to provide the same protection against membership inference attacks, and (iii) reduces communication by up to 10.5x against the same competitor for the same level of protection.
翻译:暂无翻译