We generalize gradient descent with momentum for learning in differentiable games to have complex-valued momentum. We give theoretical motivation for our method by proving convergence on bilinear zero-sum games for simultaneous and alternating updates. Our method gives real-valued parameter updates, making it a drop-in replacement for standard optimizers. We empirically demonstrate that complex-valued momentum can improve convergence in adversarial games - like generative adversarial networks - by showing we can find better solutions with an almost identical computational cost. We also show a practical generalization to a complex-valued Adam variant, which we use to train BigGAN to better inception scores on CIFAR-10.
翻译:我们普及了梯度下降,在不同的游戏中学习的动力是复杂而有价值的势头。 我们通过证明双线零和游戏的趋同,同时和交替更新,为我们的方法提供了理论动力。 我们的方法提供了实际价值的参数更新,使它成为标准优化器的低位替代物。 我们从经验上证明,复杂价值的势头可以改善对抗性游戏的趋同,例如基因对抗网络,表明我们可以用几乎相同的计算成本找到更好的解决办法。 我们还展示了对复杂价值的亚当变异物的实用概括,我们用它来训练BigGAN,以更好地开始CIFAR-10的成绩。