We tackle the problem of bias mitigation of algorithmic decisions in a setting where both the output of the algorithm and the sensitive variable are continuous. Most of prior work deals with discrete sensitive variables, meaning that the biases are measured for subgroups of persons defined by a label, leaving out important algorithmic bias cases, where the sensitive variable is continuous. Typical examples are unfair decisions made with respect to the age or the financial status. In our work, we then propose a bias mitigation strategy for continuous sensitive variables, based on the notion of endogeneity which comes from the field of econometrics. In addition to solve this new problem, our bias mitigation strategy is a weakly supervised learning method which requires that a small portion of the data can be measured in a fair manner. It is model agnostic, in the sense that it does not make any hypothesis on the prediction model. It also makes use of a reasonably large amount of input observations and their corresponding predictions. Only a small fraction of the true output predictions should be known. This therefore limits the need for expert interventions. Results obtained on synthetic data show the effectiveness of our approach for examples as close as possible to real-life applications in econometrics.
翻译:暂无翻译