Nowadays, real data in person re-identification (ReID) task is facing privacy issues, e.g., the banned dataset DukeMTMC-ReID. Thus it becomes much harder to collect real data for ReID task. Meanwhile, the labor cost of labeling ReID data is still very high and further hinders the development of the ReID research. Therefore, many methods turn to generate synthetic images for ReID algorithms as alternatives instead of real images. However, there is an inevitable domain gap between synthetic and real images. In previous methods, the generation process is based on virtual scenes, and their synthetic training data can not be changed according to different target real scenes automatically. To handle this problem, we propose a novel Target-Aware Generation pipeline to produce synthetic person images, called TAGPerson. Specifically, it involves a parameterized rendering method, where the parameters are controllable and can be adjusted according to target scenes. In TAGPerson, we extract information from target scenes and use them to control our parameterized rendering process to generate target-aware synthetic images, which would hold a smaller gap to the real images in the target domain. In our experiments, our target-aware synthetic images can achieve a much higher performance than the generalized synthetic images on MSMT17, i.e. 47.5% vs. 40.9% for rank-1 accuracy. We will release this toolkit\footnote{\noindent Code is available at \href{https://github.com/tagperson/tagperson-blender}{https://github.com/tagperson/tagperson-blender}} for the ReID community to generate synthetic images at any desired taste.


翻译:目前,个人再识别(ReID)任务中的真实数据正面临隐私问题,例如,被禁止的数据集 DukeMMMC-ReID。因此,为ReID任务收集真实数据变得更加困难。同时,为ReID数据贴标签的人工成本仍然很高,进一步阻碍了ReID研究的开发。因此,许多方法转而为ReID算法生成合成图像作为替代物,而不是真实图像。然而,合成图像和真实图像之间存在不可避免的域间差距。在以往的方法中,生成过程以虚拟场景为基础,而其合成培训数据不能根据不同的目标真实场景自动更改。为了处理这一问题,我们提议建立一个名为TAGPerson的“目标-Awararge General”管道,用于制作合成人图像。具体来说,它涉及一种参数化的设定方法,参数是可以控制的,可以按照目标场景调整。在TAGPerson中,我们从目标场景提取信息,用它们来控制我们标尺/认识的合成图像的生成过程,这将在目标域域域内对真实图像保持较小差距。 在GIMT/remareal图像上,我们将在GM17的合成图像上实现一个高得多的合成图像。

0
下载
关闭预览

相关内容

超文本传输安全协议是超文本传输协议和 SSL/TLS 的组合,用以提供加密通讯及对网络服务器身份的鉴定。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员