We give tight statistical query (SQ) lower bounds for learnining halfspaces in the presence of Massart noise. In particular, suppose that all labels are corrupted with probability at most $\eta$. We show that for arbitrary $\eta \in [0,1/2]$ every SQ algorithm achieving misclassification error better than $\eta$ requires queries of superpolynomial accuracy or at least a superpolynomial number of queries. Further, this continues to hold even if the information-theoretically optimal error $\mathrm{OPT}$ is as small as $\exp\left(-\log^c(d)\right)$, where $d$ is the dimension and $0 < c < 1$ is an arbitrary absolute constant, and an overwhelming fraction of examples are noiseless. Our lower bound matches known polynomial time algorithms, which are also implementable in the SQ framework. Previously, such lower bounds only ruled out algorithms achieving error $\mathrm{OPT} + \epsilon$ or error better than $\Omega(\eta)$ or, if $\eta$ is close to $1/2$, error $\eta - o_\eta(1)$, where the term $o_\eta(1)$ is constant in $d$ but going to 0 for $\eta$ approaching $1/2$. As a consequence, we also show that achieving misclassification error better than $1/2$ in the $(A,\alpha)$-Tsybakov model is SQ-hard for $A$ constant and $\alpha$ bounded away from 1.


翻译:我们给出了严格的统计查询( SQ ), 用于在 Massart 噪音面前学习半空。 特别是, 假设所有标签的损坏概率都以美元为单位, 概率最高为$。 我们显示, 任意 $\eta = $[ 0. 1/ 2美元], 出现错误分类错误的每个 SQ 算法都比 $ 0. eta 的准确性更高, 或至少是一个超级球度的查询次数。 此外, 即使信息- 理论最佳差错 $\ mathrm{ OPT} $ 小于 美元( log_ c (d)\right) 美元, 概率均以美元为单位, 美元为单位, 美元 < c < 1 美元 绝对不变不变值, 绝大多数的例子是无声的。 我们已知的多元时间算法更低, 也可以在 SQ 框架中执行。 这样的下限仅排除了计算错误 $( mateffer) $( $) 美元) 和 美元( 美元) 美元( 美元) 美元) 美元比 美元接近 美元或 美元(美元) 美元(美元) 美元(美元) 直至 美元) 美元) 。

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关VIP内容
专知会员服务
84+阅读 · 2020年12月5日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员