Traditionally, CNN models possess hierarchical structures and utilize the feature mapping of the last layer to obtain the prediction output. However, it can be difficulty to settle the optimal network depth and make the middle layers learn distinguished features. This paper proposes the Interflow algorithm specially for traditional CNN models. Interflow divides CNNs into several stages according to the depth and makes predictions by the feature mappings in each stage. Subsequently, we input these prediction branches into a well-designed attention module, which learns the weights of these prediction branches, aggregates them and obtains the final output. Interflow weights and fuses the features learned in both shallower and deeper layers, making the feature information at each stage processed reasonably and effectively, enabling the middle layers to learn more distinguished features, and enhancing the model representation ability. In addition, Interflow can alleviate gradient vanishing problem, lower the difficulty of network depth selection, and lighten possible over-fitting problem by introducing attention mechanism. Besides, it can avoid network degradation as a byproduct. Compared with the original model, the CNN model with Interflow achieves higher test accuracy on multiple benchmark datasets.


翻译:在传统上,CNN模型拥有等级结构,并利用最后一层的地貌图图获得预测输出。然而,很难确定最佳网络深度,使中层学习不同的特征。本文件提议了针对传统的CNN模型的Interflow算法。Interflow将CNN模型按照深度分成几个阶段,并通过每个阶段的地貌图进行预测。随后,我们将这些预测分支输入一个设计良好的关注模块,该模块将了解这些预测分支的重量,将其汇总并获得最终输出。流入重量和连接在浅层和深层中学习的特征,使每个阶段的地貌信息得到合理和有效的处理,使中层能够学习更显著的特征,并加强模型代表能力。此外,Interflow可以缓解渐变的问题,降低网络深度选择的难度,并通过引入关注机制来减轻可能的过度适应问题。此外,与原始模型相比,具有Interplow的CNN模型可以避免网络作为副产品退化。在多个基准数据集上实现更高的测试精度。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
基于注意力机制的图卷积网络
科技创新与创业
73+阅读 · 2017年11月8日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
3+阅读 · 2019年3月15日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
基于注意力机制的图卷积网络
科技创新与创业
73+阅读 · 2017年11月8日
Top
微信扫码咨询专知VIP会员