Topographic feature maps are low dimensional representations of data, that preserve spatial dependencies. Current methods of training such maps (e.g. self organizing maps - SOM, generative topographic maps) require centralized control and synchronous execution, which restricts scalability. We present an algorithm that uses $N$ autonomous units to generate a feature map by distributed asynchronous training. Unit autonomy is achieved by sparse interaction in time \& space through the combination of a distributed heuristic search, and a cascade-driven weight updating scheme governed by two rules: a unit i) adapts when it receives either a sample, or the weight vector of a neighbor, and ii) broadcasts its weight vector to its neighbors after adapting for a predefined number of times. Thus, a vector update can trigger an avalanche of adaptation. We map avalanching to a statistical mechanics model, which allows us to parametrize the statistical properties of cascading. Using MNIST, we empirically investigate the effect of the heuristic search accuracy and the cascade parameters on map quality. We also provide empirical evidence that algorithm complexity scales at most linearly with system size $N$. The proposed approach is found to perform comparably with similar methods in classification tasks across multiple datasets.
翻译:地形地貌图是低维的数据表示,保持空间依赖性。目前培训这类地图的方法(如自我组织地图-SOM、基因地形图)需要集中控制和同步执行,这限制了可缩放性。我们提出一种算法,使用美元自主单位通过分布非同步培训生成地貌地图。单位自主是通过分散的超常搜索和由级联驱动的重力更新计划结合分布式超常搜索和由两个规则管辖的级联驱动的重力更新计划实现的,这些规则是:一个单位i)在接收样品或邻居的重量矢量时进行调整。二)在根据预先确定的次数进行调整后,向邻居播放其重量矢量。因此,矢量更新可以引发适应性评估。我们绘制一个统计力模型,使我们能够通过分布式超时空搜索和由级联动的重量更新计划进行调节。我们用实验性调查了超导搜索精确度搜索的影响和地图质量的级联标参数。我们还提供实验性证据,表明在最直线性的方法下,在最接近的分类方法下,采用多线性的方法。