Sparse structure learning in high-dimensional Gaussian graphical models is an important problem in multivariate statistical signal processing; since the sparsity pattern naturally encodes the conditional independence relationship among variables. However, maximum a posteriori (MAP) estimation is challenging if the prior model admits multiple levels of hierarchy, and traditional numerical optimization routines or expectation--maximization algorithms are difficult to implement. To this end, our contribution is a novel local linear approximation scheme that circumvents this issue using a very simple computational algorithm. Most importantly, the conditions under which our algorithm is guaranteed to converge to the MAP estimate are explicitly derived and are shown to cover a broad class of completely monotone priors, including the graphical horseshoe. Further, the resulting MAP estimate is shown to be sparse and consistent in the $\ell_2$-norm. Numerical results validate the speed, scalability, and statistical performance of the proposed method.
翻译:高斯高斯高斯高地图形模型的简单结构学习是多维统计信号处理中的一个重要问题;因为宽度模式自然地将各变量之间的有条件独立关系编码。然而,如果前一模型接受多重等级,而传统的数字优化常规或期望-最大化算法难以实施,则后半部(MAP)的最大估计具有挑战性。为此,我们的贡献是一个新颖的本地线性近似方案,它使用非常简单的计算算法绕过这一问题。最重要的是,我们保证算法与MAP估计数趋同的条件得到明确推算,并显示涵盖包括图形马蹄在内的全单色前科的一大类。此外,由此产生的MAP估计数在$\ell_2$-norm中被显示为稀疏和一致。 数字结果验证了拟议方法的速度、可缩放性和统计性能。</s>