We study nonparametric density estimation in non-stationary drift settings. Given a sequence of independent samples taken from a distribution that gradually changes in time, the goal is to compute the best estimate for the current distribution. We prove tight minimax risk bounds for both discrete and continuous smooth densities, where the minimum is over all possible estimates and the maximum is over all possible distributions that satisfy the drift constraints. Our technique handles a broad class of drift models, and generalizes previous results on agnostic learning under drift.
翻译:我们研究的是非静止漂移环境中的非对称密度估计。根据从逐渐改变时间的分布中取取的独立样本序列,目标是计算当前分布的最佳估计值。我们证明离散和连续平稳密度的最小值风险界限很紧,其中最小值超过所有可能的估算值,最大值超过所有可能达到漂移限制的分布值。我们的技术处理广泛的漂移模型,并概括以往在漂移中进行不可知性学习的结果。