In this paper we study the properties of the Lasso estimator of the drift component in the diffusion setting. More specifically, we consider a multivariate parametric diffusion model $X$ observed continuously over the interval $[0,T]$ and investigate drift estimation under sparsity constraints. We allow the dimensions of the model and the parameter space to be large. We obtain an oracle inequality for the Lasso estimator and derive an error bound for the $L^2$-distance using concentration inequalities for linear functionals of diffusion processes. The probabilistic part is based upon elements of empirical processes theory and, in particular, on the chaining method.
翻译:在本文中,我们研究了Lasso估计器在扩散设置下估计漂移元件的属性。更具体地说,我们考虑了在区间$[0,T]$内连续观察到的多元参数扩散模型$X$,并在稀疏约束下研究了漂移估计。我们允许模型和参数空间的维数很大。我们为Lasso估计器获得了一个oracle不等式,并使用扩散过程的线性泛函的集中不等式导出$L^2$距离的误差界限。概率部分基于经验过程理论的元素,特别是链式方法。