Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE). In PINNs, the residual form of the PDE of interest and its boundary conditions are lumped into a composite objective function as an unconstrained optimization problem, which is then used to train a deep feed-forward neural network. Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach when applied to different kinds of PDEs. To address these limitations, we propose a versatile framework that can tackle both inverse and forward problems. The framework is adept at multi-fidelity data fusion and can seamlessly constrain the governing physics equations with proper initial and boundary conditions. The backbone of the proposed framework is a nonlinear, equality-constrained optimization problem formulation aimed at minimizing a loss functional, where an augmented Lagrangian method (ALM) is used to formally convert a constrained-optimization problem into an unconstrained-optimization problem. We implement the ALM within a stochastic, gradient-descent type training algorithm in a way that scrupulously focuses on meeting the constraints without sacrificing other loss terms. Additionally, as a modification of the original residual layers, we propose lean residual layers in our neural network architecture to address the so-called vanishing-gradient problem. We demonstrate the efficacy and versatility of our physics- and equality-constrained deep-learning framework by applying it to learn the solutions of various multi-dimensional PDEs, including a nonlinear inverse problem from the hydrology field with multi-fidelity data fusion. The results produced with our proposed model match exact solutions very closely for all the cases considered.


翻译:物理知情神经网络( PINNs) 已被推荐用于学习局部差异方程式( PDE) 的解决方案。 在 PINNs 中, 兴趣方程式及其边界条件的剩余形式会作为一个不受限制的优化问题, 被拼凑成一个复合目标功能, 作为不受限制的优化问题, 然后用来训练一个深度的进料神经网络。 在这里, 我们显示, 制定目标功能的具体方式是PINN 方法在应用到不同类型PDEs时受到严重限制的根源。 为了解决这些限制, 我们提出了一个能同时解决反向和前向问题的多功能框架。 这个框架适应多功能性非功能数据融合, 并且可以无缝地限制物理方程式的组合。 这个拟议框架的骨干是一个非线性、 平等方程式的优化, 用来尽量减少损失功能, 强化的Lagrangian方法(ALM) 被正式地将限制的功能问题转换成一个不受限制的优化的解决方案。 我们把ALM( ALM) 放在一个不具有深度的多功能性、 异性和非前端性数据融合性的数据融合框架中,, 将一个稳定的网络的模型化模型化的模型化的模型化的模型化过程的系统化方法 以演示式的系统化的模型化的模型化为我们演示的模型, 。 我们的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型,,, 将它作为其他的模型的模型的模型的模型, 的模型的演示式的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的演示的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
221+阅读 · 2020年6月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员