We introduce a compositional physics-aware neural network (FINN) for learning spatiotemporal advection-diffusion processes. FINN implements a new way of combining the learning abilities of artificial neural networks with physical and structural knowledge from numerical simulation by modeling the constituents of partial differential equations (PDEs) in a compositional manner. Results on both one- and two-dimensional PDEs (Burger's, diffusion-sorption, diffusion-reaction, Allen-Cahn) demonstrate FINN's superior modeling accuracy and excellent out-of-distribution generalization ability beyond initial and boundary conditions. With only one tenth of the number of parameters on average, FINN outperforms pure machine learning and other state-of-the-art physics-aware models in all cases -- often even by multiple orders of magnitude. Moreover, FINN outperforms a calibrated physical model when approximating sparse real-world data in a diffusion-sorption scenario, confirming its generalization abilities and showing explanatory potential by revealing the unknown retardation factor of the observed process.
翻译:我们引入了一种成份物理觉悟神经网络(FINN),用于学习瞬时消化过程。FINN采用一种新的方式,将人工神经网络的学习能力与数字模拟的物理和结构知识结合起来,通过以组成方式模拟部分差异方程(PDEs)的成分,对部分差异方程(PDEs)进行建模。一维和二维PDEs(Burger's, 扩散-吸附,扩散-反应,Allen-Cahn)的结果显示了FINN在最初和边界条件下以外的高度建模精度和极佳的分布外全面化能力。在平均参数中只有十分之一的参数中,FINN超越了纯机学习和其他最先进的物理觉悟性模型,甚至往往以多个数量级的形式进行。此外,FINN在适应扩散-吸收情景中稀有的实际数据时,超越了校准的物理模型,证实了其普遍化能力,并通过揭示所观察到的未知的迟滞因素来说明其解释性潜力。