We consider distributed optimization under communication constraints for training deep learning models. We propose a new algorithm, whose parameter updates rely on two forces: a regular gradient step, and a corrective direction dictated by the currently best-performing worker (leader). Our method differs from the parameter-averaging scheme EASGD in a number of ways: (i) our objective formulation does not change the location of stationary points compared to the original optimization problem; (ii) we avoid convergence decelerations caused by pulling local workers descending to different local minima to each other (i.e. to the average of their parameters); (iii) our update by design breaks the curse of symmetry (the phenomenon of being trapped in poorly generalizing sub-optimal solutions in symmetric non-convex landscapes); and (iv) our approach is more communication efficient since it broadcasts only parameters of the leader rather than all workers. We provide theoretical analysis of the batch version of the proposed algorithm, which we call Leader Gradient Descent (LGD), and its stochastic variant (LSGD). Finally, we implement an asynchronous version of our algorithm and extend it to the multi-leader setting, where we form groups of workers, each represented by its own local leader (the best performer in a group), and update each worker with a corrective direction comprised of two attractive forces: one to the local, and one to the global leader (the best performer among all workers). The multi-leader setting is well-aligned with current hardware architecture, where local workers forming a group lie within a single computational node and different groups correspond to different nodes. For training convolutional neural networks, we empirically demonstrate that our approach compares favorably to state-of-the-art baselines.


翻译:在培训深层学习模式的沟通限制下,我们考虑分配优化。我们提出一个新的算法,其参数更新依赖于两种力量:一个定期梯度步骤,以及由目前表现最佳的工人(领导人)决定的纠正方向。我们的方法在许多方面不同于参数稳定计划ESGD(ESGD ) :(一) 我们的客观提法不会改变固定点的位置,而不会改变最初优化问题;(二) 我们避免通过拉动当地工人降至不同地方最低水平(即其参数的平均值)而导致的趋同减速;(三) 通过设计,我们更新打破了对称的诅咒(目前表现在对称的非康韦克斯方向中,我们的方法与参数最优化的亚优解决方案不相适应 ) ;(四) 我们的方法更能沟通,因为它只传达领导者而不是所有工人的参数;(二) 我们对拟议算法的批量进行理论分析,我们称之为领导者Gradientleb(LGD), 以及其偏差变异变量(LSGDDD ) 最后,我们用一种不固定式的方法来打破对当前最精确的变数的变数模式,我们每个工人的变数, 向一个代表着一个最接近的工人的系统,每个工人的每个方向, 向一个代表一个最有色的系统, 向一个最有色的工人的系统, 向一个代表一个不同的工人的系统, 向一个更动的系统, 向一个显示一个不同的工人的系统, 向一个方向, 向一个显示一个方向, 向一个不同的工人的每个方向, 向一个代表着一个我们最有最最最有的系统, 向一个方向, 向一个方向, 向一个方向的工人的工人的每个方向, 向一个代表一个代表一个方向, 向一个代表一个代表一个代表一个代表的每个方向, 向一个方向, 向的每个的每个的每个的工人的工人的工人的每个的工人的每个的每个的每个的每个方向, 向一个代表一个方向, 向一个代表一个代表一个代表一个代表一个代表一个代表一个代表一个方向, 向一个代表一个方向, 向一个代表一个代表一个代表一个代表一个代表一个代表一个代表一个方向, 向一个方向, 向一个方向, 向一个方向, 一种

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
专知会员服务
161+阅读 · 2020年1月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员