With the rapid development of quantum computers, several applications are being proposed for them. Quantum simulations, simulation of chemical reactions, solution of optimization problems and quantum neural networks (QNNs) are some examples. However, problems such as noise, limited number of qubits and circuit depth, and gradient vanishing must be resolved before we can use them to their full potential. In the field of quantum machine learning, several models have been proposed. In general, in order to train these different models, we use the gradient of a cost function with respect to the model parameters. In order to obtain this gradient, we must compute the derivative of this function with respect to the model parameters. One of the most used methods in the literature to perform this task is the parameter-shift rule method. This method consists of evaluating the cost function twice for each parameter of the QNN. A problem with this method is that the number of evaluations grows linearly with the number of parameters. In this work we study an alternative method, called Evolution Strategies (ES), which are a family of black box optimization algorithms which iteratively update the parameters using a search gradient. An advantage of the ES method is that in using it one can control the number of times the cost function will be evaluated. We apply the ES method to the binary classification task, showing that this method is a viable alternative for training QNNs. However, we observe that its performance will be strongly dependent on the hyperparameters used. Furthermore, we also observe that this method, alike the parameter shift rule method, suffers from the problem of gradient vanishing.
翻译:随着量子计算机的迅速发展,正在提出几种应用。量子计算机的迅速发展,正在提议几种应用。量子模拟、化学反应模拟、优化问题解决方案和量子神经网络(QNNs)就是其中的一些例子。然而,在能够充分利用量子计算机之前,必须解决诸如噪音、数量有限的quits和电路深度以及梯度消失等问题,然后我们才能充分利用它们的潜力。在量子机器学习领域,已经提出了几种模型。一般地,为了培训这些不同的模型,我们使用与模型参数有关的成本函数梯度的梯度。为了获得这个梯度,我们必须用模型参数参数参数参数模型来计算该函数的衍生物。文献中最常用的方法之一是参数变换规则方法。这种方法包括评估QNNN的每个参数的成本函数两次。在量子机器学习领域,一个问题是如何用线性的评价数量随着参数的增加而增加。我们研究一种替代方法,称为“进化战略”(ES),这是一个黑盒优化算法的组合,用来用梯度来反复更新参数。我们使用的参数变换梯度规则方法的优势在于参数。我们使用这个方法的计算方法,这个方法的优点是用来用来衡量其性方法。我们用来衡量一个成本。我们使用一种方法的数值。我们用来用来评估一个方法的数值。我们使用一种方法,这个方法的原理。我们用来用来用来用来评估一种方法的原理。</s>