We develop Temporal Quantile Adjustment (TQA), a general method to construct efficient and valid prediction intervals (PIs) for regression on cross-sectional time series data. Such data is common in many domains, including econometrics and healthcare. A canonical example in healthcare is predicting patient outcomes using physiological time-series data, where a population of patients composes a cross-section. Reliable PI estimators in this setting must address two distinct notions of coverage: cross-sectional coverage across a cross-sectional slice, and longitudinal coverage along the temporal dimension for each time series. Recent works have explored adapting Conformal Prediction (CP) to obtain PIs in the time series context. However, none handles both notions of coverage simultaneously. CP methods typically query a pre-specified quantile from the distribution of nonconformity scores on a calibration set. TQA adjusts the quantile to query in CP at each time $t$, accounting for both cross-sectional and longitudinal coverage in a theoretically-grounded manner. The post-hoc nature of TQA facilitates its use as a general wrapper around any time series regression model. We validate TQA's performance through extensive experimentation: TQA generally obtains efficient PIs and improves longitudinal coverage while preserving cross-sectional coverage.
翻译:我们开发了时间量调整(TQA),这是为跨部门时间序列数据回归建立高效和有效预测间隔(PIS)的一般方法。这些数据在许多领域,包括计量经济和保健领域都很常见。在保健领域,一个典型的例子是利用生理时间序列数据预测病人的结果,病人人口组成一个跨部门。在这个环境中,可靠的PI估计器必须处理两种不同的覆盖范围概念:跨截面截面截面截面覆盖,以及每个时间序列的时间尺度的纵向覆盖。最近的工作探索了对Confrical预测(CP)的调整,以便在时间序列中获取PIS。然而,没有一种数据同时处理两种覆盖概念。CP的方法通常是从一个校准组的不相容分数分布中查询一个预先设定的大小。TQA的估算器每时将量量调整为CP的查询量,以美元计算跨截面和纵向覆盖的时间尺度。TQA的后方位预测特性有助于在时间序列中广泛使用TQA的跨面覆盖。TQA的模型和TA的跨面测试,同时普遍地改进TA的跨层分析。