We present BiPOCO, a Bi-directional trajectory predictor with POse COnstraints, for detecting anomalous activities of pedestrians in videos. In contrast to prior work based on feature reconstruction, our work identifies pedestrian anomalous events by forecasting their future trajectories and comparing the predictions with their expectations. We introduce a set of novel compositional pose-based losses with our predictor and leverage prediction errors of each body joint for pedestrian anomaly detection. Experimental results show that our BiPOCO approach can detect pedestrian anomalous activities with a high detection rate (up to 87.0%) and incorporating pose constraints helps distinguish normal and anomalous poses in prediction. This work extends current literature of using prediction-based methods for anomaly detection and can benefit safety-critical applications such as autonomous driving and surveillance. Code is available at https://github.com/akanuasiegbu/BiPOCO.
翻译:我们介绍双向轨道预测器BiPOCO,这是与POSECOCO公司合作的一个双向轨迹预测器,用于探测行人在视频中的异常活动;与以前基于地貌重建的工作不同,我们的工作通过预测行人未来轨迹和比较预测与预期,查明行人异常事件;我们用我们的预测器介绍一套新颖的构成型损失,并利用每具尸体的预测误差来探测行人异常现象;实验结果显示,我们的BIPOCO公司办法能够探测行人异常活动,其检测率高(高达87.0%),并纳入各种因素制约,有助于区分预测中的正常和异常现象;这项工作扩展了目前关于使用预测方法探测异常现象的文献,并有利于诸如自主驾驶和监视等安全关键应用的文献;可在https://github.com/anuasiegbu/BIPOCO公司查阅代码。