This article describes an R package bqror that estimates Bayesian quantile regression for ordinal models introduced in Rahman (2016). The paper classifies ordinal models into two types and offers computationally efficient, yet simple, Markov chain Monte Carlo (MCMC) algorithms for estimating ordinal quantile regression. The generic ordinal model with 3 or more outcomes (labeled ORI model) is estimated by a combination of Gibbs sampling and Metropolis-Hastings algorithm. Whereas an ordinal model with exactly 3 outcomes (labeled ORII model) is estimated using Gibbs sampling only. In line with the Bayesian literature, we suggest using marginal likelihood for comparing alternative quantile regression models and explain how to compute the same. The models and their estimation procedures are illustrated via multiple simulation studies and implemented in two applications. The article also describes several other functions contained within the bqror package, which are necessary for estimation, inference, and assessing model fit.
翻译:本文描述一个 R 包 bqror, 估计 Bayesian 千分位回归值, 用于 Rahman( 2016年) 引入的正统模型。 本文将正统模型分为两种类型, 并提供了计算高效但简单、 Markov 链式 Monte Carlo (MCMC) 算法, 用于估算正反位数回归值。 具有 3 或 以上结果的通用正统模型( 贴标签 ORI 模型) 由 Gibbs 抽样和大都会- Hasting 算法 组合来估算。 仅使用 Gibs 取样法( 标签 ORII 模型 ) 来估算正反角模型 。 根据 Bayes 文献, 我们建议使用边际的可能性来比较替代的复位回归模型, 并解释如何计算相同。 这些模型及其估算程序通过多个模拟研究加以说明, 并在两个应用中实施 。 文章还描述了 bqror 软件包中包含的其他功能, 这些功能对于估算、 推断和评估模型是否合适是必要的 。