Motivated by applications to COVID dynamics, we describe a branching process in random environments model $\{Z_n\}$ whose path behavior changes when crossing upper and lower thresholds. This introduces a cyclical path behavior involving periods of increase and decrease leading to supercritical and subcritical regimes. Even though the process is not Markov, we identify subsequences at random time points $\{(\tau_j, \nu_j)\}$ -- specifically the values of the process at crossing times, {\it{viz.}}, $\{(Z_{\tau_j}, Z_{\nu_j})\}$ -- along which the process retains the Markov structure. Under mild moment and regularity conditions, we establish that the subsequences possess a regenerative structure and prove that the limiting normal distribution of the growth rates of the process in supercritical and subcritical regimes decouple. For this reason, we establish limit theorems concerning the length of supercritical and subcritical regimes and the proportion of time the process spends in these regimes. As a byproduct of our analysis, we explicitly identify the limiting variances in terms of the functionals of the offspring distribution, threshold distribution, and environmental sequences.
翻译:基于对COVID动态的应用,我们描述了随机环境模型中的分流过程,其路径行为在跨越上限和下限时会发生变化。这引入了周期性路径行为,涉及增加和减少的时期,导致超临界和次临界制度。即使该过程不是Markov,但我们在随机时间点上确定了次序列,具体地说是该过程在交叉时间的数值,(it{viz_j),( ⁇ _tau_j},( ⁇ _j_j}) 美元 -- -- 该过程在跨越上限和下限时会改变路径行为。在轻度和常规条件下,我们确定子序列具有再生结构,并证明在超临界和次临界制度下限制该过程的正常增长率分配。为此,我们设定了超临界和次临界制度的时间长度以及这些制度中过程所花时间的比例。作为我们分析的一个副产品,我们明确确定在环境分析中,在功能临界值分布的序列中,我们明确确定函数分布的序列。