In this paper we consider the compression of asymptotically many i.i.d. copies of ensembles of mixed quantum states where the encoder has access to a side information system. This source is equivalently defined as a classical-quantum state, namely, a quantum system correlated with a classical system playing the role of an inaccessible reference system. The figure of merit is evaluated based on per-copy or local error criterion. Under this set-up, known as a rate-distortion set-up, one can study the trade-off between the compression rate and the error. The optimal trade-off can be characterized by the rate-distortion function, which is the best rate given a certain distortion. We find the rate-distortion functions in the entanglement-assisted and unassisted scenarios, in terms of a single-letter mutual information quantity and the regularized entanglement of purification, respectively. We also consider the general case when both communication and entanglement are charged, and present the full qubit-entanglement rate region. Our compression scheme covers both blind and visible compression models (and other models in between) depending on the structure of the side information system.
翻译:在本文中,我们考虑对混合量子状态中混合量子体组装的简单很多(i.d.d.d.)副本进行压缩,编码器可以进入侧边信息系统。这一来源被等同于古典-量子状态,即一个与古典体系相联的量子系统,它起着无法进入的参照系统的作用。根据按每份或局部误差标准对功绩数字进行评估。在这个设置下,被称为率扭曲设置,可以研究压缩率和误差之间的权衡。最佳交换的特征可以是率扭曲功能,这是某种扭曲情况下的最佳率。我们从单字母相互信息数量和净化的正规化纠结中分别找到纠缠在一起的分解率函数。我们还考虑了在收取通信费和纠结率时的一般案例,并展示了完全的折叠率区域。我们的压缩方案包括分解功能,这是因某种扭曲而出现的最佳速率。根据某种扭曲而得出的最佳速率。我们从一个单字母的相互信息数量和不同结构中找到的分解率函数(和其他模型),这取决于两种信息系统的侧面结构。