Convolution neural networks (CNNs) have achieved remarkable success, but typically accompany high computation cost and numerous redundant weight parameters. To reduce the FLOPs, structure pruning is a popular approach to remove the entire hidden structures via introducing coarse-grained sparsity. Meanwhile, plentiful pruning works leverage fine-grained sparsity instead (sparsity are randomly distributed), whereas their sparse models lack special designed computing library for potential speedup. In this technical report, we study and present an efficient convolution neural network inference system to accelerate its forward pass by utilizing the fine-grained sparsity of compressed CNNs. Our developed FSCNN is established based on a set of specialized designed sparse data structures, operators and associated algorithms. Experimentally, we validate that FSCNN outperforms standard deep learning library PyTorch on popular CNN architectures such as VGG16 if sufficiently high sparsity exhibits. However, due to the contiguity issue of sparse operators, FSCNN is typically not comparable with highly optimized dense operator. Therefore, coarse-grained (structured) sparsity is our recommendation for generic model compression.


翻译:突变神经网络(CNNs)取得了显著的成功,但通常伴随着高计算成本和大量冗余重量参数。 为了减少FLOPs, 结构修剪是一种通俗的方法,通过引入粗微的微粒放大器来清除整个隐藏结构。 与此同时, 丰硕的剪裁工作将微粒的辐射作用推向微小( 差异是随机分布的), 而其稀有的模型缺乏为潜在加速而专门设计的计算机图书馆。 在本技术报告中,我们研究和展示一个高效的共振神经网络推论系统,通过利用压缩的CNN的精密过滤器加速其前行。 我们开发的FSCNN是根据一套专门设计的稀有数据结构、操作员和相关算法建立的。 实验性地,我们证实FSCNN在VGG16等流行的广度显示器上超越了标准的深层学习图书馆PyTorrch。 然而,由于稀有的操作员的连续性问题,FSCNN通常与高度优化的密度操作员不相匹配。 因此, 粗缩( 结构) 压缩(结构) 质压缩的容器是我们的一般建议。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
37+阅读 · 2021年2月10日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员