We present an adaptive deep representation of volumetric fields of 3D shapes and an efficient approach to learn this deep representation for high-quality 3D shape reconstruction and auto-encoding. Our method encodes the volumetric field of a 3D shape with an adaptive feature volume organized by an octree and applies a compact multilayer perceptron network for mapping the features to the field value at each 3D position. An encoder-decoder network is designed to learn the adaptive feature volume based on the graph convolutions over the dual graph of octree nodes. The core of our network is a new graph convolution operator defined over a regular grid of features fused from irregular neighboring octree nodes at different levels, which not only reduces the computational and memory cost of the convolutions over irregular neighboring octree nodes, but also improves the performance of feature learning. Our method effectively encodes shape details, enables fast 3D shape reconstruction, and exhibits good generality for modeling 3D shapes out of training categories. We evaluate our method on a set of reconstruction tasks of 3D shapes and scenes and validate its superiority over other existing approaches. Our code, data, and trained models are available at https://wang-ps.github.io/dualocnn.


翻译:我们展示了3D形状的适应性深体体积字段, 并展示了一种有效的方法, 以学习高品质 3D 形状重建与自动编码的深体体体积。 我们的方法是将3D 形状的体积域编码成一个由八叶树组织的适应性特点体积体积, 并应用一个紧凑的多层光谱网络来绘制每个 3D 位置的外观特征。 一个编码- 解码器网络的设计是为了学习基于octree 结点双形图的图解变化的适应性功能体积。 我们网络的核心是一个新的图解变操作器, 在一个固定的由不同级别的非常规相邻八叶节点组成的功能网格上定义, 这不仅能减少环形体积的计算和记忆成本, 而且还能改善地貌学习的性能。 我们的方法有效地塑造了细节, 能够快速的 3D 形状重建, 并展示了3D 形状的模型在培训类别中的典型。 我们评估了一套重建模式的方法, 3D 形状和图像/图像/ 验证了其他的优势。

1
下载
关闭预览

相关内容

专知会员服务
89+阅读 · 2021年6月29日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
[每周ArXiv] 最新几篇GNN论文
图与推荐
0+阅读 · 2021年5月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年6月26日
Arxiv
14+阅读 · 2021年7月20日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
VIP会员
相关VIP内容
专知会员服务
89+阅读 · 2021年6月29日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
[每周ArXiv] 最新几篇GNN论文
图与推荐
0+阅读 · 2021年5月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员