We show how probabilistic numerics can be used to convert an initial value problem into a Gauss--Markov process parametrised by the dynamics of the initial value problem. Consequently, the often difficult problem of parameter estimation in ordinary differential equations is reduced to hyperparameter estimation in Gauss--Markov regression, which tends to be considerably easier. The method's relation and benefits in comparison to classical numerical integration and gradient matching approaches is elucidated. In particular, the method can, in contrast to gradient matching, handle partial observations, and has certain routes for escaping local optima not available to classical numerical integration. Experimental results demonstrate that the method is on par or moderately better than competing approaches.
翻译:我们展示了如何使用概率数字将初始值问题转换成由初始值问题动态所仿照的高斯-马尔科夫进程。 因此,普通差分方程式中通常困难的参数估计问题被降为高斯-马尔科夫回归法中的超参数估计,这往往容易得多。 该方法与典型数字整合法和梯度匹配法相比,其关系和效益得到了阐明。 特别是,该方法与梯度匹配法不同,可以处理部分观察,并且有某些途径可以避开当地奥地马,而传统的数字整合法则不具备这种途径。 实验结果表明,该方法比相互竞争的方法要简单或中度更好。